Aristote : Physique

ARISTOTE

PHYSIQUE.

TOME DEUX : LIVRE VI. DE LA DIVISIBILITÉ DU MOUVEMENT. CHAPITRE XV
 

Traduction française : BARTHÉLÉMY SAINT-HILAIRE.

chapitre XIV - chapitre XVI

paraphrase du livre VI

 

 

 

LEÇONS DE PHYSIQUE

 

LIVRE VI.


DE LA DIVISIBILITÉ DU MOUVEMENT.

 

 

 

 

 

 

CHAPlTRE XV.


L'indivisible ne peut avoir de mouvement, dans le sens absolu de ce mot, bien que l'indivisible puisse indirectement se mouvoir avec la chose dans laquelle il est. Démonstration de ce principe. Le temps ne se compose pas d'instants, non plus que la ligne ne se compose pas de points. L'indivisible ne se meut pas, parce qu'il n'y a pas de mouvement proprement dit dans la durée d'un instant.

1  Ἀποδεδειγμένων δὲ τούτων λέγομεν ὅτι τὸ ἀμερὲς οὐκ ἐνδέχεται κινεῖσθαι πλὴν κατὰ συμβεβηκός, οἷον κινουμένου τοῦ σώματος ἢ τοῦ μεγέθους τῷ ἐνυπάρχειν, καθάπερ ἂν εἰ τὸ ἐν τῷ πλοίῳ κινοῖτο ὑπὸ τῆς τοῦ πλοίου φορᾶς ἢ τὸ μέρος τῇ τοῦ ὅλου κινήσει. 2 Ἀμερὲς δὲ λέγω τὸ κατὰ ποσὸν ἀδιαίρετον. 3 Καὶ γὰρ αἱ τῶν μερῶν κινήσεις ἕτεραί εἰσι κατ' αὐτά τε τὰ μέρη καὶ κατὰ τὴν τοῦ ὅλου κίνησιν. Ἴδοι δ' ἄν τις ἐπὶ τῆς σφαίρας μάλιστα τὴν διαφοράν· οὐ γὰρ ταὐτὸν τάχος ἐστὶ τῶν τε πρὸς τῷ κέντρῳ καὶ τῶν ἐκτὸς καὶ τῆς ὅλης, ὡς οὐ μιᾶς οὔσης κινήσεως.

4 Καθάπερ οὖν εἴπομεν, οὕτω μὲν ἐνδέχεται κινεῖσθαι τὸ ἀμερὲς ὡς ὁ ἐν τῷ πλοίῳ καθήμενος τοῦ πλοίου θέοντος, καθ' αὑτὸ δ' οὐκ ἐνδέχεται. Μεταβαλλέτω γὰρ ἐκ τοῦ ΑΒ εἰς τὸ ΒΓ, εἴτ' ἐκ μεγέθους εἰς μέγεθος εἴτ' ἐξ εἴδους εἰς εἶδος εἴτε κατ' ἀντίφασιν· ὁ δὲ χρόνος ἔστω ἐν ᾧ πρώτῳ μεταβάλλει ἐφ' οὗ Δ. Οὐκοῦν ἀνάγκη αὐτὸ καθ' ὃν μεταβάλλει χρόνον ἢ ἐν τῷ ΑΒ εἶναι ἢ ἐν τῷ ΒΓ, ἢ τὸ μέν τι αὐτοῦ ἐν τούτῳ τὸ δ' ἐν θατέρῳ· πᾶν γὰρ τὸ μεταβάλλον οὕτως εἶχεν. Ἐν ἑκατέρῳ μὲν οὖν οὐκ ἔσται τι αὐτοῦ· μεριστὸν γὰρ ἂν εἴη. Ἀλλὰ μὴν οὐδ' ἐν τῷ ΒΓ· μεταβεβληκὸς γὰρ ἔσται, ὑπόκειται δὲ μεταβάλλειν. Λείπεται δὴ αὐτὸ ἐν τῷ ΑΒ εἶναι, καθ' ὃν μεταβάλλει χρόνον. Ἠρεμήσει ἄρα· τὸ γὰρ ἐν τῷ αὐτῷ εἶναι χρόνον τινὰ ἠρεμεῖν ἦν. Ὥστ' οὐκ ἐνδέχεται τὸ ἀμερὲς κινεῖσθαι οὐδ' ὅλως μεταβάλλειν· 5 μοναχῶς γὰρ ἂν οὕτως ἦν αὐτοῦ κίνησις, εἰ ὁ χρόνος ἦν ἐκ τῶν νῦν· αἰεὶ γὰρ ἐν τῷ νῦν κεκινημένον ἂν ἦν καὶ μεταβεβληκός, [241a] ὥστε κινεῖσθαι μὲν μηδέποτε, κεκινῆσθαι δ' ἀεί. Τοῦτο δ' ὅτι ἀδύνατον, δέδεικται καὶ πρότερον· οὔτε γὰρ ὁ χρόνος ἐκ τῶν νῦν οὔθ' ἡ γραμμὴ ἐκ στιγμῶν οὔθ' ἡ κίνησις ἐκ κινημάτων· οὐθὲν γὰρ ἄλλο ποιεῖ ὁ τοῦτο λέγων ἢ τὴν κίνησιν ἐξ ἀμερῶν, καθάπερ ἂν εἰ τὸν χρόνον ἐκ τῶν νῦν ἢ τὸ μῆκος ἐκ στιγμῶν.

6 Ἔτι δὲ καὶ ἐκ τῶνδε φανερὸν ὅτι οὔτε στιγμὴν οὔτ' ἄλλο ἀδιαίρετον οὐθὲν ἐνδέχεται κινεῖσθαι. Ἅπαν γὰρ τὸ κινούμενον ἀδύνατον πρότερον μεῖζον κινηθῆναι αὑτοῦ, πρὶν ἢ ἴσον ἢ ἔλαττον. Εἰ δὴ τοῦτο, φανερὸν ὅτι καὶ ἡ στιγμὴ ἔλαττον ἢ ἴσον κινηθήσεται πρῶτον. Ἐπεὶ δὲ ἀδιαίρετος, ἀδύνατον ἔλαττον κινηθῆναι πρότερον· ἴσην ἄρα αὑτῇ. Ὥστε ἔσται ἡ γραμμὴ ἐκ στιγμῶν· αἰεὶ γὰρ ἴσην κινουμένη τὴν πᾶσαν γραμμὴν στιγμὴ καταμετρήσει. Εἰ δὲ τοῦτο ἀδύνατον, καὶ τὸ κινεῖσθαι τὸ ἀδιαίρετον ἀδύνατον.

7 Ἔτι δ' εἰ ἅπαν ἐν χρόνῳ κινεῖται, ἐν δὲ τῷ νῦν μηθέν, ἅπας δὲ χρόνος διαιρετός, εἴη ἄν τις χρόνος ἐλάττων ὁτῳοῦν τῶν κινουμένων ἢ ἐν ᾧ κινεῖται ὅσον αὐτό. Οὗτος μὲν γὰρ ἔσται χρόνος ἐν ᾧ κινεῖται διὰ τὸ πᾶν ἐν χρόνῳ κινεῖσθαι, χρόνος δὲ πᾶς διαιρετὸς δέδεικται πρότερον. Εἰ δ' ἄρα στιγμὴ κινεῖται, ἔσται τις χρόνος ἐλάττων ἢ ἐν ᾧ αὑτὴν ἐκινήθη. Ἀλλὰ ἀδύνατον· ἐν γὰρ τῷ ἐλάττονι ἔλαττον ἀνάγκη κινεῖσθαι. Ὥστε ἔσται διαιρετὸν τὸ ἀδιαίρετον εἰς τὸ ἔλαττον, ὥσπερ καὶ ὁ χρόνος εἰς τὸν χρόνον.

8 Μοναχῶς γὰρ ἂν κινοῖτο τὸ ἀμερὲς καὶ ἀδιαίρετον, εἰ ἦν ἐν τῷ νῦν κινεῖσθαι δυνατὸν τῷ ἀτόμῳ· τοῦ γὰρ αὐτοῦ λόγου ἐν τῷ νῦν κινεῖσθαι καὶ ἀδιαίρετόν τι κινεῖσθαι.

suite

 

§ 1. Ceci démontré, nous prétendons que ce qui est sans parties ne peut avoir de mouvement, si ce n'est indirectement ; et, par exemple, l'indivisible ne se meut que par le mouvement du corps ou de la grandeur quelconque dans laquelle il est, comme une chose qui est dans un bateau et qui n'est mise en mouvement que par le mouvement du bateau même ; ou bien encore, comme la partie est mue par le mouvement du tout.  § 2. Quand je dis « Sans parties, » j'entends ce qui est indivisible sous le rapport de la quantité.  § 3. Car les mouvements des parties sont différents, selon que ces parties elles-mêmes se meuvent, ou que c'est le tout lui-même qui est en mouvement. Où l'on peut bien observer cette différence, c'est dans la sphère; car la rapidité des parties qui sont au centre, ou des parties qui sont à la surface, ou de la sphère elle-même n'est pas identique; et c'est bien la preuve qu'il n'y a pas un seul mouvement.

§ 4. Ainsi donc, nous le répétons, ce qui est sans parties peut se mouvoir comme se meut la personne assise dans un bateau, par cela seul que le bateau est en marche. Mais en soi, ce qui est sans parties ne peut pas se mouvoir. Supposons, en effet, que le corps change de AB en BC, soit d'ailleurs qu'il change en passant d'une grandeur à une autre grandeur, soit en passant d'une forme à une autre forme, soit que ce soit par simple contradiction. Soit D le temps primitif durant lequel le corps change. Il y a nécessité que l'objet dans le temps où il change soit tout entier ou en AB ou en BC, ou qu'une de ses parties soit dans l'un, et qu'une de ses parties soit dans l'autre, puisque tout ce qui change est soumis à cette condition, ainsi que nous l'avons vu. Mais d'abord une partie de l'objet ne pourra être dans l'un et dans l'autre; car alors l'objet serait divisible. De plus, il ne peut pas davantage être dans BC ; car alors il aura changé, et nous supposons qu'il change. Reste donc que l'objet soit dans AB, durant le temps où il change. Donc il y sera en repos ; car être en repos signifie, ainsi que nous l'avons dit, se trouver dans le même état durant quelque temps. Donc par conséquent, ce qui est sans parties ne peut ni se mouvoir, ni éprouver un changement quelconque. § 5. Il n'y aurait qu'un seul sens où l'on pourrait dire que le corps se meut : c'est le cas où le temps se composerait d'instants ; car le corps aurait été mu, et il aurait changé toujours dans un instant, [241a] de telle sorte qu'on pourrait dire que l'objet n'est jamais actuellement en mouvement et qu'il y a toujours été. Mais nous avons antérieurement démontré que c'est là une chose impossible; car le temps ne se compose pas plus d'instants que la ligne ne se compose de points, ni que le mouvement ne se compose de motions successives; et, si l'on soutenait cette théorie, cela reviendrait absolument à dire que le mouvement se compose d'éléments sans parties ; par exemple, comme le temps qui se composerait d'instants, et que la grandeur se compose de points.

§ 6. Une autre conséquence évidente de ceci, c'est que le point, ni aucun indivisible, ne peut avoir de mouvement. En effet, aucun corps en mouvement ne peut, dans son mouvement, parcourir un espace plus grand que lui, sans avoir préalablement parcouru un espace égal à lui-même, ou un espace plus petit. Cela posé, il est évident que le point parcourra un espace, ou plus petit que lui, ou égal à lui, avant de parcourir tout autre espace. Mais le point étant indivisible, il est bien impossible qu'il parcoure préalablement un espace plus petit que lui-même. Il parcourra donc un espace égal ; et par conséquent, la ligne sera composée de points; car ayant un mouvement égal à lui-même, le point finira par mesurer toute la ligne. Mais si cela ne se peut pas, il ne se peut pas non plus davantage que l'indivisible soit jamais en mouvement.

§ 7. Ajoutez que si tout ce qui se meut doit se mouvoir dans le temps, et que dans un instant il n'y ait aucun mouvement possible ; et si le temps est toujours divisible, il s'ensuit qu'il y aura, pour tout mobile quelconque, un temps moindre que le temps dans lequel il parcourt, en se mouvant, un espace égal à lui-même. Or, ce sera précisément le temps durant lequel il se meut, parce que le mouvement ne peut jamais avoir lieu que dans le temps. Mais il a été démontré plus haut que le temps est toujours divisible. Si donc le point se meut, il y aura un temps plus petit dans lequel son mouvement aura eu lien. Mais cela est de toute impossibilité, puisque dans un temps moindre il faut nécessairement que le mouvement soit moindre aussi; et par conséquent, l'indivisible serait divisé en parties moindres, comme le temps lui-même serait divisé en temps.

§ 8. Ainsi donc, ce qui est sans parties et est indivisible ne pourrait se mouvoir qu'a une seule condition, c'est qu'il fût possible qu'il y eût mouvement dans un instant indivisible; car cela revient tout à fait au même, et qu'il puisse y avoir mouvement dans l'instant, et que l'indivisible puisse se mouvoir.

suite

Ch. XV, § 1. Ceci démontré, cette transition n'est pas purement verbale; et après avoir réfuté les arguments de Zénon contre le mouvement, il est naturel de montrer en quel sens et par rapport à quels objets on peut dire réellement qu'il n'y a pas de mouvement. C'est ainsi que ce chapitre est la conséquence de celui qui précède, Saint Thomas croit, par une conjecture ingénieuse, que toute cette discussion est dirigée contre le système de Démocrite, et qu'elle a pour but de démontrer que les atomes ne peuvent pas être en mouvement.

Ce qui est sans parties, ou ce qui est indivisible, comme on le dira plus bas.

Et, par exemple, l'indivisible ne se meut, le texte n'est n'est pas tout à fait aussi précis.

§ 2. Ce qui est indivisible, soit en réalité, soit rationnellement. Ainsi, rationnellement l'individu est un indivisible, quoique matériellement il puisse être divisé. Ce § semble d'ailleurs interrompre le raisonnement, qui continue dans le suivant.

§ 3. Car les mouvements, ceci est la suite du § 1er.

A la surface, ou si l'ou veut aussi : « A la circonférence. » On pourrait traduire encore : « Qui sont en dehors du centre. »

Un seul mouvement, pour le tout et pour les parties.

§ 4. En passant d'une grandeur à une autre grandeur, c'est l'accroissement ou la diminution,

D'une forme à une autre forme, c'est l'altération ou le changement de qualité.

Par simple contradiction, de l'être au non-être, ou de l'affirmation à la négation; et réciproquement. Voir les Catégories, ch. 44, §§ 4 et suiv., p. 128 de ma traduction.

Ou en AB, ou en BC, il faut tracer une ligne droite dont les lettres seraient ABC.

Ainsi que nous l'avons vu, le texte n'est pas tout à fait aussi formel. Voir plus haut, ch. 13, § 1 et passim.

Dans l'un et dans l'autre, il serait plus correct de (lire : « Dans l'un et une autre partie dans l'autre. »

Serait divisible, ce qui est contre l'hypothèse, puisqu'on suppose l'objet indivisible.

Davantage être dans BC, attendu que BC étant le point d'arrivée du changement, le corps, quand il y parvient, ne change plus, mais a déjà changé.

Ainsi que nous l'avons dit, voir plus haut, ch. 12, § 6.

§ 5. Le temps se composerait d'instants, Aristote a toujours combattu cette théorie, parce qu'il fait de l'instant la limite du temps, et non le temps lui-même. Voir plus haut, Livre IV, ch. 17, § 3, et ch. 19, § 20,

Actuellement, j'ai ajouté ce mot pour rendre toute la force de l'expression grecque.

Antérieurement démontré, voir plus haut, Livre IV, ch. 17, § 8, et ch, 19, § 14.

 — De notions successives ou d'impulsions ; mais j'ai taché de conserver dans ma traduction l'analogie d'expression qui est dans le texte.

La grandeur se compose de points, théorie aussi fausse que celle qui admet que le temps se compose d'instants.

§ 6. Une autre conséquence, cette conséquence n'est pas autre précisément, puisque c'est la question même posée au début de ce chapitre, § 1.

Un espace plus petit que lui-même, ce qui serait impossible, puisque le point est supposé indivisible, et qu'il n'y a rien de plus petit que l'indivisible.

Un mouvement égal à lui-même, le texte dit seulement : « Un mouvement égal. »

§ 7. Doit se mouvoir dans le temps. Voir plus haut, ch. 2, §§ 7 et 8.

Pour tout mobile quelconque, il semble que cette expression est trop générale, et qu'il faudrait la restreindre au mobile indivisible.

Il a été démontré, voir plus haut, Livre IV, ch. 10, § 7. — Un temps plus petit, puisque le temps est indéfiniment divisible.

L'indivisible serait divisé en parties moindres, ce qui est contradictoire et impossible.

§ 8. Il y eût mouvement dans un instant indivisible, voir plus haut, ch. 2, § 12.

Mouvement dans l'instant, voir plus haut la théorie de l'instant, Livre IV, ch. 17.

suite